报告题目:Graphs with large maximum degree containing no edge-critical graphs
报告人:华东师范大学助理教授,袁龙图
报告时间: 2021年10月20日 14:30-17:30
报告地点:腾讯会议876 672 109
报告摘要:
We say that a graph is edge-critical if it contains an edge whose deletion reduces its chromatic number. Let F be an edge-critical graph with chromatic number r+2. In this paper, we determine the maximum number of edges in a graph on n vertices with given maximum degree that contains no copy of F, where n is sufficiently large, with the unique extremal graph, a complete (r+1)-partite graph.Our results generalize a theorem proved by Balister, Bollobas, Riordan and Schelp.
报告人简介:
袁龙图,2017年获上海交通大学博士学位,2017-2019年在中国科学技术大学从事博士后研究工作,现为华东师范大学助理教授。主要研究兴趣和方向是极值图论,在Journal of Graph Theory,Electronic Journal of Combinatorics及Discrete Mathematics等国际权威期刊发表学术论文9篇,主持国家自然科学基金1项。